This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Excess Volumes and Isentropic Compressibilities of 1,2-Dichloroethane with Ketones

P. Venkateswarlu^a; N. V. Choudary^a; G. K. Raman^a

^a Department of Chemistry, College of Engineering, Sri Venkateswara University, Tirupati, India

To cite this Article Venkateswarlu, P., Choudary, N. V. and Raman, G. K.(1984) 'Excess Volumes and Isentropic Compressibilities of 1,2-Dichloroethane with Ketones', Physics and Chemistry of Liquids, 14: 2, 107 – 113 **To link to this Article: DOI:** 10.1080/00319108408080802

URL: http://dx.doi.org/10.1080/00319108408080802

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doese should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 1984, Vol. 14, pp. 107-114
0031-9104/84/1402-0107\$18.50/0
© 1984 Gordon and Breach Science Publishers, Inc.
Printed in the United Kingdom

Excess Volumes and Isentropic Compressibilities of 1,2-Dichloroethane with Ketones

P. VENKATESWARLU, N. V. CHOUDARY, and G. K. RAMAN

Department of Chemistry, College of Engineering, Sri Venkateswara University, Tirupati 517 502, India.

(Received January 31, 1984; in final form March 21, 1984)

Experimental data for the excess volume and the sound velocity in binary mixtures of 1,2-dichloroethane with methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl iso-butyl ketone, cyclopentanone, cyclohexanone and 2-methyl cyclohexanone are reported at 303.15 K. All the systems exhibited small V^E and ΔK_s values.

1 INTRODUCTION

Excess thermodynamic properties and isentropic compressibilities have extensive applications in characterising the aspects of physico-chemical behaviour of liquid mixtures such as molecular association, deassociation and complex formation. Reddy and Naidu^{1,2} studied the molecular interactions of some alcohols in methyl ethyl ketone and iso-butyl methyl ketone. Kehiaian and Grolier³ have analysed the properties of binary mixtures containing ketones in terms of quasi-chemical group contribution model. Doan-Nguyen et al.⁴ have studied the binaries of chloroalkane with alkane and alcohol. Grolier and Benson⁵ have investigated the binary systems containing ketones. Handa and Benson^{6,7} have attempted to study the molecular interactions in binary liquid mixtures containing chloroalkane as common component. Choudary et al.⁸⁻¹² have studied extensively the binary mixtures containing chloroalkane as common component. Krishnaiah and Naidu¹³ have also investigated the binary mixtures containing chloroalkane as common component. Dharmaraju et al.14 have reported the excess volumes and isentropic compressibilities of ketones in acetonitrile. However no attempt has been made to study the interactions between 1,2-dichloroethane and ketones. Hence, we measured the excess volumes and isentropic compressibilities for the mixtures 1,2-dichloroethane with ketones which exhibit dipole-dipole interaction in pure state. The ketones include methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl iso-butyl ketone, cyclopentanone, cyclohexanone and 3-methyl cyclohexanone.

2 EXPERIMENTAL

The ketones were purified by the methods described by Riddick and Bunger.¹⁵ 1,2-Dichloroethane was purified by the method described earlier.⁸ The purity of the samples was checked by comparing the measured densities of the components with those reported in literature.¹⁶ The density data of pure components are given in Table I.

	$\rho/\mathrm{g}~\mathrm{cm}^{-3}$		
Component	Present work	Literature	
1,2-Dichloroethane	1.23832	1.23831	
Methyl ethyl ketone	0.79445	0.79452	
Diethyl ketone	0.80455	0.80461	
Methyl propyl ketone	0.79660	0.79656	
Methyl iso-butyl ketone	0.78221*	0.78230*	
Cyclopentanone	0.93898	0.93902	
Cyclohexanone	0.93757	0.93761	
2-Methyl cyclohexanone	0.91625	0.91632	

TABLE	I
-------	---

Density of the pure components at 303.15 K

* Density at 313.15 K.

Excess volumes were measured using the dilatometer described by Rao and Naidu.¹⁷ The mixing cell contained two bulbs of different capacities which were connected through a *U*-tube having mercury to separate the two components. One end of the bulb was fitted with a capillary (1 mm id) and the other end of the second bulb was fixed with ground glass stopper.

Isentropic compressibilities were computed from the density and sound speed data, density being computed from the measured excess volume data. The following relation was employed for computing density

$$\rho = \frac{x_1 M_1 + x_2 M_2}{V_m + V^E} \tag{1}$$

where x, M and V_m denote the mole fraction, molecular weight and molar volume of the mixture respectively. V^E denotes the excess molar volome. The ultrasonic speed was measured with a single crystal interferometer at fre-

quency of 2 MHz and the data were accurate to $\pm 0.15\%$. All the measurements were made at a constant temperature employing a thermostat that could be maintained to ± 0.01 K.

3 RESULTS AND DISCUSSION

The experimental excess volumes for the seven binary mixtures are given in Table II. Isentropic compressibilities were calculated using the relation

$$K_s = u^{-2} \rho^{-1} \tag{2}$$

TABLE II

Values of	V ^E for	the binary	mixtures	of	1,2-dichloroethane
		with ketor	nes at 303.	.15	K

	V^E		
<i>X</i> ₁	cm ³ mol ⁻¹	<i>X</i> ₁	cm ³ mol ⁻¹
1,2-dichloroethane		1,2-dich	loroethane
+ methyl	ethyl ketone	+ diet	hyl ketone
0.1647	-0.032	0.1756	-0.031
0.2435	-0.040	0.2917	-0.028
0.2855	-0.040	0.3301	-0.026
0.4175	-0.033	0.4505	-0.018
0.5206	-0.029	0.5543	-0.014
0.6286	-0.019	0.6609	0.005
0.7124	-0.010	0.7619	0.014
0.9003	-0.003	0.9045	0.006
1,2-dich	lloroethane	1,2-dich	loroethane
+ methyl p	propyl ketone	+ methyl is	so-butyl ketone
0.1878	-0.016	0.2031	0.030
0.2682	0.003	0.2351	0.033
0.3699	0.016	0.3067	0.042
0.4595	0.025	0.3474	0.050
0.5765	0.036	0.4991	0.063
0.6902	0.043	0.6271	0.067
0.8159	0.034	0.7861	0.070
0.9113	0.026	0.9196	0.055
1,2-dich	loroethane	1,2-dicl	loroethane
+ cyclc	pentanone	+ cycl	ohexanone
0.1835	0.000	0.1927	0.020
0.2060	0.010	0.2044	0.021
0.3035	0.019	0.2988	0.026
0.4090	0.026	0.4644	0.042
0.5220	0.032	0.5777	0.052
0.6512	0.042	0.6569	0.054
0.7211	0.041	0.7680	0.048
0.8786	0.020	0.8827	0.042

(continued)

		V^E	
	X_1	$cm^3 mol^{-1}$	
1	,2-dic	hloroethane	
+ 2-1	nethy	l cyclohexanone	
0	.1440	-0.020	
0	.2434	-0.010	
0	.3372	0.008	
0	.4293	0.023	
0	.5463	0.040	
0	.6020	0.050	
0	.7977	0.058	
0	.8967	0.045	

TABLE II (continued)

where u and ρ denote the sound velocity and density. The values of K_s are accurate to ± 2 TPa⁻¹. The deviation in isentropic compressibility from the ideal value assumed to be additive in terms of volume fraction is estimated using the equation

$$\Delta K_s = K_s - (\phi_1 K_{s1} + \phi_2 K_{s2}) \tag{3}$$

where K_s , K_{s1} and K_{s2} are isentropic compressibilities of mixture and pure components respectively. ϕ_1 and ϕ_2 are the volume fractions of the component. The experimental data for density, sound velocity, isentropic compressibility and ΔK_s are included in Table III.

TABLE III

Volume factors (ϕ_1) , densities (ρ) , sound velocities (u), and the deviation in isentropic compressibilities (ΔK_s) of binary liquid mixtures of 1,2-dichloroethane with ketones at 303.15 K

ϕ_1	$(g \text{ cm}^{-3})$	$(m \text{ sec}^{-1})$	K _s	ΔK_s (TPa ⁻¹)
	1,2-dichloroeth	ane + methyl	ethyl keto	one
0.0000	0.79445	1170.0	920	0
0.1479	0.86041	1166.5	854	-17
0.2208	0.89291	1164.5	826	-20
0.2603	0.91038	1162.5	813	-20
0.3869	0.96654	1160.0	769	-21
0.4888	1.01174	1159.5	735	-21
0.5984	1.06029	1158.0	703	-17
0.6856	1.09889	1159.0	678	-12
0.8883	1.18875	1167.5	617	5
0000.1	1.23829	1175.0	585	0

(continued)

ϕ_1	ρ (g cm ⁻³)	$\frac{u}{(m \sec^{-1})}$	Ks	ΔK_s (TPa ⁻¹)		
1,2-dichloroethane + diethyl ketone						
0.0000	0.80455	1197.0	867	0		
0.1361	0.86541	1188.0	818	-11		
0.2351	0.90675	1181.0	791	-10		
0.2689	0.92139	1171.5	751	-9		
0.3797	0.96940	1171.5	752	-8		
0.4814	1.01352	1167.5	724	-7		
0.5927	1.06156	1165.0	694	-6		
0.7049	1.11012	1165.0	664	-3		
0.8761	1.18446	1167.0	620	0		
1.0000	1.23829	1175.0	585	0		
1	,2-dichloroeth	ane + methyl j	oropyl ke	tone		
0.0000	0.79660	1200.0	872	0		
0.1460	0.86120	1183.0	830	0		
0.2131	0.89068	1176.0	812	1		
0.3026	0.93009	1171.0	784	1		
0.3859	0.96678	1169.5	756	5		
0.5015	1.01771	1163.5	725	3		
0.6222	1.07088	1165.0	688	3		
0.7661	1.13453	1163.5	651	1		
0.8836	1.18651	1167.5	618	0		
1.0000	1.23829	1175.0	585	0		
1,	2-dichloroetha	ne + methyl is	o-butyl k	etone		
0.0000	0.79125	1169.0	925	0		
0.1386	0.85299	1168.0	859	-19		
0.1625	0.86367	1166.0	852	-18		
0.2183	0.88857	1161.0	835	-16		
0.2515	0.90329	1158.5	825	-15		
0.3862	0.96326	1154.0	780	-14		
0.5150	1.02076	1153.0	734	-13		
0.6988	1.10279	1157.0	677	-10		
0.8784	1.18306	1164.5	623	-3		
1.0000	1.23829	1175.0	585	0		
	1,2-dichloro	ethane + cyclo	pentanor	ie		
0.0000	0.93898	1374.0	564	0		
0.1670	0.98896	1339.0	564	-4		
0.1879	0.99509	1333.0	566	-2		
0.2799	1.02249	1311.0	569	-1		
0.3817	1.05291	1281.5	578	6		
0.4935	1.08627	1262.0	578	4		
0.6248	1.12538	1238.5	579	2		
0.6976	1.14720	1225.0	581	2		
0.8659	1.19785	1196.0	584	2		
1.0000	1.23829	1175.0	585	0		

TABLE III (continued)

(continued)

φ ₁	$(g \text{ cm}^{-3})$	u (m sec ⁻¹)	K _s	ΔK_s (TPa ⁻¹)
	1,2-dichloro	ethane + cycl	ohexanone	•
0.0000	0.93757	1388.0	554	0
0.1541	0.98372	1347.0	560	1
0.1657	0.98718	1343.5	562	3
0.2455	1.01114	1321.5	566	4
0.3983	1.05687	1288.0	570	4
0.5108	1.09056	1259.5	578	8
0.5938	1.11544	1241.0	582	10
0.7165	1.15244	1216.5	586	10
0.8517	1.19310	1194.0	588	8
1.0000	1.23829	1175.0	585	0
	1,2-dichloroetha	ne + 2-methyl	cyclohexa	none
0.0000	0.91625	1346.0	602	0
0.0990	0.94828	1326.0	600	0
0.1736	0.97223	1309.0	600	1
0.2493	0.99646	1289.5	604	6
0.3293	1.02208	1264.5	612	16
0.4401	1.05755	1248.0	607	12
0.4968	1.07569	1240.0	605	11
0.7202	1.14736	1205.0	600	10
0.8500	1.18935	1189.0	595	8
1.0000	1.23829	1175.0	585	0

TABLE III (continued)

The values given in Table II shows that V^E exhibits small negative and positive values in systems of 1,2-dichloroethane with methyl ethyl ketone, diethyl ketone, methyl propyl ketone and 2-methyl cyclohexanone. The binary mixtures of 1,2-dichloroethane with methyl iso-butyl ketone, cyclopentanone and cyclohexanone result in small positive V^E values throughout the molefraction studied. As the experimental V^E values are very small we did not fit V^E into smoothing equation. The following factors influence V^E : (a) size difference, (b) deassociation of self associated chloroalkane¹⁸ and ketones¹⁰ and (c) dipole-induced-dipole interaction between ketoxy group and free electrons of chlorin atom of dichloroethane. The first two factors contribute to the positive excess volume while the last factor contributes to negative excess volume. The small experimental V^E values show that the two opposing factors compensate each other.

The results included in Table III show that ΔK_s is negative over volume fraction range studied in the systems 1,2-dichloroethane with methyl ethyl ketone, diethyl ketone, methyl iso-butyl ketone and is positive in the systems dichloroethane with methyl propyl ketone, cyclohexanone and 2-methyl cyclohexanone. The mixtures of dichloroethane and cyclopentanone exhibit

small negative and positive ΔK_s values. Finally it may be concluded from the above observations that the seven binary systems under investigation exhibit almost ideal behaviour.

Acknowledgement

The authors (PV and NVC) are thankful to CSIR, New Delhi, for the financial support in the form of Senior Research Fellowship.

References

- 1. K. S. Reddy and P. R. Naidu, J. Chem. Thermodyn., 10, 2861 (1978).
- 2. K. S. Reddy and P. R. Naidu, Aust. J. Chem., 32, 687 (1979).
- 3. H. V. Kehiaian and J. P. E. Grolier, Fluid Phase Equilibria, 7, 95 (1981).
- 4. T. H. Doan-Nguyen, J. H. Vera, and G. A. Ratcliff, J. Chem. Eng. Data, 23, 219 (1978).
- 5. J. P. E. Grolier and G. C. Benson, J. Chem. Eng. Data, 20, 243 (1975).
- 6. Y. P. Handa and G. C. Benson, Fluid Phase Equilibria, 4, 261 (1980).
- 7. Y. P. Handa and G. C. Benson, Fluid Phase Equilibria, 4, 277 (1980).
- 8. N. V. Choudary and P. R. Naidu, Can. J. Chem., 59, 2210 (1981).
- 9. N. V. Choudary, A. Krishnaiah, and P. R. Naidu, J. Chem. Eng. Data, 27, 4 (1982).
- 10. N. V. Choudary, A. Krishnaiah, and J. C. Mouli, and P. R. Naidu, J. Chem. Eng. Data, (in press).
- 11. N. V. Choudary and P. R. Naidu, Chemica Scripta, 19, 89 (1982).
- 12. N. V. Choudary, J. C. Mouli, and P. R. Naidu, Acoustics Letters, 6, 56 (1982).
- 13. A. Krishnaiah and P. R. Naidu, J. Chem. Eng. Data, 25, 135 (1980).
- 14. G. Dharmaraju, G. Narayanaswamy, and G. K. Raman, J. Chem. Eng. Data, (in Press).
- 15. J. A. Riddick and W. B. Bunger, Organic Solvents, Wiley Interscience, New York (1970).
- J. Timmermans, "Physico-chemical constants of pure organic compounds," Elsevier Publishing Co., Amsterdam (1950).
- 17. M. V. P. Rao and P. R. Naidu, Can. J. Chem., 52, 788 (1976).
- 18. A. A. L. McClelian and S. W. Nicksic, J. Phys. Chem., 69, 446 (1965).